產地類別 | 進口 | 應用領域 | 化工,電子/電池 |
---|---|---|---|
產地 | 德國 | 品牌 | 西門子 |
(1)BOOL:數據類型布爾,取值范圍為0或是1,表示的是開關狀態的斷開或是接通,程序中的尋址方式以為的方式進行尋址如M0.0.對應的指令為觸點或是線圈指令。
(2)Byte:數據類型字節, 8位的二進制數存儲器,取值范圍0~255,對存儲的尋址方式為字節的方式進行尋址如VB0.對應使用的指令如MOV_B、WAND_B等。
![]() |
參考價 | 面議 |
更新時間:2022-02-24 11:41:25瀏覽次數:283
聯系我們時請說明是化工儀器網上看到的信息,謝謝!
西門子變頻器6SE6430-2UD35-5FB0
可編程控制器CPU所需的工作電源一般都是5V直流電源,一般的編程器接口和通信模塊還需要5V和24V直流電源。這些電源都由可編程控制器PLC本身的電源模塊供給,所以在實際應用中要注意電源模塊的選擇。在選擇電源模塊時一般應考慮以下幾點:
1.電源模塊的輸入電壓。可編程控制器電源模塊可以包括多種輸入電壓,有220V交流、110V交流和24V直流。注意,在實際應用中要根據具體情況選擇,確定了輸入電壓后,也就確定了系統供電電源的輸出電壓。
2.電源模塊的輸出功率。在選擇電源模塊時,其額定輸出功率必須大于CPU模塊、所有I/O模塊、各種智能模塊的總消耗功率之和,并且要留有30%左右的余量。當同一電源模塊既要為主機單元,又要為擴展單元供電時,從主機單元到遠一個擴展單元的線路壓降必須小于0.25V。
3.擴展單元中的電源模塊。有的系統由于擴展單元中安裝有智能模塊及一些特殊模塊,就要求為擴展單元安裝相應的電源模塊。這時相應的電源模塊輸出功率可按各自的供電范圍計算。
4.電源模塊接線。選定了電源模塊后,還要確定電源模塊的接線端子和連接方式,以便正確進行系統供電電路的設計。一般的電源模塊其輸入電壓是通過接線端子與供電電源相連的,而輸出電壓則通過總線插座與可編程控制器CPU的總線相連。
(1)BOOL:數據類型布爾,取值范圍為0或是1,表示的是開關狀態的斷開或是接通,程序中的尋址方式以為的方式進行尋址如M0.0.對應的指令為觸點或是線圈指令。
(2)Byte:數據類型字節, 8位的二進制數存儲器,取值范圍0~255,對存儲的尋址方式為字節的方式進行尋址如VB0.對應使用的指令如MOV_B、WAND_B等。
(3)WORD:數據類型字,16位的二進制數存儲器,取值范圍0~65535,對存儲器的尋址方式為字如VW10,對應使用的指令如MOV_W、WAND_W等。
(4)DWORD:數據類型雙字,32位的二進制數存儲器,取值范圍0~4294967295,對應的尋址方式為雙字的尋址方式,如MD0.對應使用的指令有MOV_D、OR_D、ROL_D等。
(5)INT:數據類型整數,16位二進制數存儲器,取值范圍-32768~32767,與WORD的區別在于WORD存儲的是無符號數,而INT存儲的是有符號的數,存儲器的表示符號位,0表示整數,1表示負數,后面的15位二進制數表示數據的大小,尋址方式也是以字的方式進行尋址,如:MW0.支持的指令有ADD_I、SUB_I等。
(6)DIN:T數據類型雙整數,32位二進制數存儲器,取值范圍-214783648~214783647,與DWORD的區別在于DWORD存儲的是無符號數,而DINT存儲的是有符號的數,存儲器的表示符號位,0表示整數,1表示負數,后面的31位二進制數表示數據的大小,尋址方式也是以字的方式進行尋址,如:MD0.支持的指令有ADD_DI、SUB_DI等。
(7)REAL:數據類型為實數(又名浮點數),32位二進制數存儲器,取值范圍為-3.402823E+38~-1.175495E-38(負數)1.175495E-38~3.402823E+38(正數)尋址方式為以雙字的格式尋址,如VD100.實數的存儲方式為32位單精度數表示,由一位符號位,八位指數位和二十三位尾數位構成,如下所示:
(8)ASCII:數據類型字符或ASCAII。一個ASCAII需要8位二進制數存儲器,一個漢字需要占用2個字節的存儲器空間,尋址方式為字節選擇,如:字符‘A’。存儲到VB0中,則VB0的值存儲內容為:
(9)string:數據類型字符串,字符串是有多個字符構成的,每個字符需要占用一個字節的存儲空間,字符串存儲器時,*個字符表示的是字符串中的字符個數,如字符串"SMART",存儲到VB10中
西門子變頻器6SE6430-2UD35-5FB0
在機電一體化方案中,注重運動控制的工藝功能在自動化系統和驅動系統中得到了廣泛的應用。西門子的Technology CPU(或稱T CPU)實現了在一個SIMATIC CPU中集成工藝和運動控制功能,它不僅可地執行開環控制和運動控制的任務,而且能*集成在SIMATIC產品家族和TIA(Totally Integrated Automation,全集成自動化)環境之中。
作為新的SINAMICS驅動家族的一員,SINAMICS S120是滿足機器和工廠框架中高性能要求的模塊化驅動系統。S120提供了高性能的單軸和多軸驅動,憑借其擴展性和靈活性,可廣泛應用在眾多行業。
1)機電一體化(Mechatronics),結合了機械工程、計算機技術和電子技術的綜合性學科,常用于制造業的設計和開發工作。
1.2 Technology CPU產品介紹
目前西門子提供了三款T CPU(如圖1)供用戶選擇:315T-2DP、317T-2DP和317TF-2DP。CPU 315T-2DP/CPU 317T-2DP應用在運動控制和標準控制相結合的典型應用中;CPU317TF-2DP除了包含了以上兩款產品的所有功能,還提供了額外的故障安全功能,可應用在標準控制、運動控制和安全相關控制相結合的綜合應用之中。
圖1 T CPU產品家族
T CPU包括以下部分:
SIMATIC CPU 31x-2DP
符合PLCopen認證的運動控制功能
工藝組態(工藝對象、軸組態、工藝工具等)
系統提供預編程的符合PLCopen認證的功能塊簡化了用戶的編程工作。STEP 7選件包S7-Technology可用于對所有的工藝功能進行編程和調試。
T CPU可同時處理多達32個(對于315T-2DP)或64個(對于317T(F)-2DP)工藝對象。
更多T CPU產品信息請參考支持中心提供的相關網頁。
1.3 SINAMICS S120產品介紹
Sinamics S120 是西門子公司推出的全新的集 V/F、矢量控制及伺服控制于一體的驅動控制系統,它不僅能控制普通的三相異步電動機,還能控制同步電機、扭矩電機及直線電機。其強大的定位功能將實現進給軸的、相對定位。內部集成的 DCC(驅動控制圖表)功能,用 PLC 的 CFC 編程語言來實現邏輯、運算及簡單的工藝等功能。
S120分為兩種,AC/AC(單軸驅動器)和DC/AC(多軸驅動器)。
更多S120產品信息請參考支持中心提供的相關網頁。
2. 準備
2.1 環境要求
2.1.1 本文檔所述實例基于以下硬件環境:
• PS307 5A 6ES7307-1EA00-0AA0
• CPU 317TF-2DP 6ES7317-6TF14-0AB0
• SIMATIC MMC 8M 6ES7953-8LP11-0AA0
• SIMATIC Field PG M3 6ES7715-1BB23-0AA1
• PROFIBUS電纜
• 其他S7 300模塊(如果有,如DI、DO等)
• S120 Training Case 6ZB2480-0BA0,
圖2 S120 Training Case
包括:
(1)CU320 6SL3040-0MA00-0AA1
(2)非調節型電源模塊5kW 6SL3130-6AE15-0AA0
(3)雙電機模塊3A 6SL3120-2TE13-0AA0
(4)同步電機(1FK7022-5AK71-1AG3),通過SMC20(6SL3055-0AA00-5BA1)接增量型編碼器(2048,Sin/Cos,1Vpp)
(5)同步電機(1FK7022-5AK71-1LG3),通過DRIVE-CLIQ接值編碼器(512 ppr,EnDat)
(6)CompactFlash Card 6SL3054-0CG01-1AA0
2.1.2 本文檔所述實例基于以下軟件環境:
• bbbbbb XP SP3
• STEP 7 V5.5 SP2
• S7 Technology V4.2 SP1
• S7 Distributed Safety V5.4 SP52)
2)如需使用故障安全功能,則需要此軟件。
2.2 任務
2.2.1 組態實例
圖3 系統連接圖
1.熱電偶的概述
1.1 熱電偶的工作原理
熱電偶和熱電阻一樣,都是用來測量溫度的。
熱電偶是將兩種不同金屬或合金金屬焊接起來,構成一個閉合回路,利用溫差電勢原理來測量溫度的,當熱電偶兩種金屬的兩端有溫度差,回路就會產生熱電動勢,溫差越大,熱電動勢越大,利用測量熱電動勢這個原理來測量溫度。
結構示意圖如下:
圖1 熱電偶測量結構示意圖
注意:如上圖所示,熱電偶是有正負極性的,所以需要確保這些導線連接到正確的極性,否則將會造成明顯的測量誤差
為了保證熱電偶可靠、穩定地工作,安裝要求如下:
① 組成熱電偶的兩個熱電極的焊接必須牢固;
② 兩個熱電極彼此之間應很好地絕緣,以防短路;
③ 補償導線與熱電偶自由端的連接要方便可靠;
④ 保護套管應能保證熱電極與有害介質充分隔離;
⑤ 熱電偶對于外界的干擾比較敏感,因此安裝還需要考慮屏蔽的問題。
1.2 熱電偶與熱電阻的區別
屬性 | 熱電阻 | 熱電偶 |
信號的性質 | 電阻信號 | 電壓信號 |
測量范圍 | 低溫檢測 | 高溫檢測 |
材料 | 一種金屬材料(溫度敏感變化的金屬材料) | 雙金屬材料在(兩種不同的金屬,由于溫度的變化,在兩個不同金屬的兩端產生電動勢差) |
測量原理 | 電阻隨溫度變化的性質來測量 | 基于熱電效應來測量溫度 |
補償方式 | 3線制和4線制接線 | 內部補償和外部補償 |
電纜接點要求 | 電阻直接接入可以更精確的避免線路的的損耗 | 要通過補償導線直接接入到模板;或補償導線接到參比接點,然后用銅制導線接到模板 |
表1 熱電偶與熱電阻的比較
2. 熱電偶的類型和可用模板
2.1熱電偶類型
根據使用材料的不同,分不同類型的熱電偶,以分度號區分,分度號代表溫度范圍,且代表每種分度號的熱電偶具體多少溫度輸出多少毫伏的電壓,熱電偶的分度號有主要有以下幾種。
分度號 | 溫度范圍(℃) | 兩種金屬材料 |
B型 | 0~1820 | 鉑銠—鉑銠 |
C型 | 0~2315 | 鎢3稀土—鎢26 稀土 |
E型 | -270~1000 | 鎳鉻—銅鎳 |
J型 | -210~1200 | 鐵—銅鎳 |
K型 | -270~1372 | 鎳鉻—鎳硅 |
L型 | -200~900 | 鐵—銅鎳 |
N型 | -270~1300 | 鎳鉻硅—鎳硅 |
R型 | -50~1769 | 鉑銠—鉑 |
S型 | -50~1769 | 鉑銠—鉑 |
T型 | -270~400 | 銅—銅鎳 |
U型 | -270~600 | 銅—銅鎳 |
表2 分度號對照表
2.2可用的模板
CPU類型 | 模板類型 | 支持熱電偶類型 |
S7-300 | 6ES7 331-7KF02-0AB0(8點) | E,J,K,L,N |
6ES7 331-7KB02-0AB0(2點) | E,J,K,L,N | |
6ES7 331-7PF11-0AB0(8點) | B,C,E,J,K,L,N,R,S,T,U | |
S7-400 | 6ES7 431-1KF10-0AB0(8點) | B,E,J,K,L,N,R,S,T,U |
6ES7 431-7QH00-0AB0(16點) | B,E,J,K,L,N,R,S,T,U | |
6ES7 431-7KF00-0AB0(8點) | B,E,J,K,L,N,R,S,T,U |
表3 S7 300/400 支持熱電偶的模板及對應熱電偶類型
3. 熱電偶的補償接線
3.1 補償方式
熱電偶測量溫度時要求冷端的溫度保持不變,這樣產生的熱電勢大小才與測量溫度呈一定的比例關系。若測量時冷端的環境溫度變化,將嚴重影響測量的準確性,所以需要對冷端溫度變化造成的影響采取一定補償的措施。
由于熱電偶的材料一般都比較貴重(特別是采用貴金屬時),而測溫點到控制儀表的距離都很遠,為了節省熱電偶材料,降低成本可以用補償導線延伸冷端到溫度比較穩定的控制室內,但補償導線的材質要和熱電偶的導線材質相同。熱電偶補償導線的作用只起延伸熱電極,使熱電偶的冷端移動到控制室的儀表端子上,它本身并不能消除冷端溫度變化對測溫的影響,不起補償作用。因此,還需采用其他修正方法來補償冷端溫度變化造成的影響,補償方式見下表。
溫度補償方式 | 說 明 | 接 線 | |
內部補償 | 使用模板的內部溫度為參比接點進行補償,再由模板進行處理。 | 直接用補償導線連接熱電偶到模擬量模板輸入端。 | |
外部補償 | 補償盒 | 使用補償盒采集并補償參比接點溫度,不需要模板進行處理。 | 可以使用銅質導線連接參比接點和模擬量西門子CP5711網卡模板輸入端。 |
熱電阻 | 使用熱電阻采集參比接點溫度,再由模板進行處理。 | ||
如果參比接點溫度恒定可以不要熱電阻參考 |
表4 各類補償方式
3.2各補償方式接線
3.2.1內部補償
內部補償是在輸入模板的端子上建立參比接點,所以需要將熱電偶直接連接到模板的輸入端,或通過補償導線間接的連接到輸入端。每個通道組必須接相同類型的熱電偶,連接示意圖如下。
CPU類型 | 支持內部補償模板類型 | 可連接熱電偶個數 |
S7-300 | 6ES7 331-7KF02-0AB0 | 多8個(4種類型,同通道組必須相同) |
6ES7 331-7KB02-0AB0 | 多2個(1種類型,同通道組必須相同) | |
6ES7 331-7PF11-0AB0 | 多8個(8種類型) | |
S7-400 | 6ES7 431-7KF00-0AB0 | 多8個(8種類型) |
表5 支持內部補償的模板及可接熱電偶個數
圖2 內部補償接線
注1:模板6ES7 331-7KF02-0AB0和6ES7 331-7KB02-0AB0需要短接補償端COMP+(10)和Mana(11),其它模板無。
3.2.2 外部補償—補償盒
補償盒方式是通過補償盒獲取熱電偶的參比接點的溫度,但補償盒必須安裝在熱電偶的參比接點處。
補償盒必須單獨供電,電源模塊必須具有充分的噪聲濾波功能,例如使用接地電纜屏蔽。
補償盒包含一個橋接電路,固定參比接點溫度標定,如果實際溫度與補償溫度有偏差,橋接熱敏電阻會發生變化,產生正的或者負的補償電壓疊加到測量電勢差信號上,從而達到補償調節的目的。
補償盒采用參比接點溫度為0℃的補償盒,推薦使用西門子帶集成電源裝置的補償盒,訂貨號如下表。
推薦使用的補償盒 | 訂貨號 | ||
帶有集成電源裝置的參比端,用于導軌安裝 | M72166-V V V V V | ||
輔助電源 | B1 | 230VAC | ![]() |
B2 | 110VAC | ||
B3 | 24VAC | ||
B4 | 24VDC | ||
連接到熱電偶 | 1 | L型 | |
2 | J型 | ||
3 | K型 | ||
4 | S型 | ||
5 | R型 | ||
6 | U型 | ||
7 | T型 | ||
參考溫度 | 00 | 0℃ |
表6 西門子參比接點的補償盒訂貨數據
圖3 S7-300模板支持接線方式
圖3 類型:熱電偶通過補償導線連接到參比接點,再用銅質導線連接參比接點和模板的輸入端子構成回路,同時由一個補償盒對模板連接的所有熱電偶進行公共補償,補償盒的9,8端子連接到模板的補償端COMP+(10)和Mana(11),所以模板的所有通道必須連接同類型的熱電偶。
圖4 S7-400模板支持接線方式
圖4 類型:模板的各個通道單獨連接一個補償盒,補償盒通過熱電偶的補償導線直接連接到模板的輸入端子構成回路,所以模板的每個通道都可以使用模板支持類型的熱電偶,但是每個通道都需要補償盒。
CPU類型 | 支持外部補償盒補償模板類型 | 可連接熱電偶個數 |
S7-300 | 6ES7 331-7KF02-0AB0 | 多8個(同類型) |
6ES7 331-7KB02-0AB0 | 多2個(同類型) | |
S7-400 | 6ES7 431-1KF10-0AB0 | 多8個(類型可不同) |
6ES7 431-7QH00-0AB0 | 多16個(類型可不同) |
表7 支持外部補償盒補償的模板及可接熱電偶個數
3.2.3 外部補償—熱電阻
熱電阻方式是通過外接電阻溫度計獲取熱電偶的參比接點的溫度,再由模板處理然后進行溫度補償,同樣熱電阻必須安裝在熱電偶的參比接點處。
圖5 S7-300模板支持方式
圖5類型:參比接點電阻溫度計pt100的四根線接到模板的35,36,37,38端子,對應(M+,M-,I+,I-),可測參比接點出溫度范圍為-25℃到85℃,
圖6 S7-400模板支持方式
圖6類型:參比接點電阻溫度計的四根線接到模板的通道0,占用通道。
以上這兩種方式,參比接點到模板的線可以用銅質導線,由于做公共補償,只能接同類型的熱電偶。
CPU類型 | 支持熱電阻補償模板類型 | 可連接熱電偶個數 |
S7-300 | 6ES7 331-7PF11-0AB0 | 多8個(同類型) |
S7-400 | 6ES7 431-1KF10-0AB0 | 多6個(同類型) |
6ES7 431-7QH00-0AB0 | 多14個(同類型) |
表8 支持熱電阻補償的模板及可接熱電偶個數
3.2.4外部補償—固定溫度
如果外部參比接點的溫度已知且固定,可以通過選擇相應的補償方式由模板內部處理補償,組態設置詳見下章節。
CPU類型 | 支持固定溫度補償模板類型 | 可連接熱電偶個數 | 可設定溫度范圍 |
S7-300 | 6ES7 331-7PF11-0AB0 | 多8個(同類型) | 0℃或50℃ |
S7-400 | 6ES7 431-1KF10-0AB0 | 多8個(同類型) | -273.15℃~327.67℃ |
6ES7 431-7QH00-0AB0 | 多16個(同類型) | -273.15℃~327.67℃ | |
6ES7 431-7KF00-0AB0 | 多8個(同類型) | -273.15℃~327.67℃ |
表9支持固定溫度補償的模板及可接熱電偶個數
從上表可以看出,300的模板只支持參比接點的溫度為0℃或50℃兩種,而400的模板支持可變溫度范圍,且范圍大。
3.2.4混合補償—熱電阻和固定溫度補償
另外,除單獨補償方式外,可以使用相同參比接點給多個模板,通過電阻溫度計進行外部補償,S7-400的模板支持這種方式,補償示意圖如下。
圖7 混合外部補償
補償過程:如圖所示,模板2和1 有公共的參比接點,模板1進行外部電阻溫度計補償方式,由CPU讀取RTD的溫度,然后使用系統功能SFC55(WR_PARM)將溫度值寫入到模板2中,模板2選擇固定溫度補償的方式。
SFC55只能對模板的動態參數進行修改,模擬量輸入模板的靜態參數(數據記錄0)和動態參數(數據記錄1)的參數及數據記錄1的結構如下:
參數 | 數據記錄號 | 參數分配方式 | |
SFC55 | STEP7 | ||
用于中斷的目標CPU | 0 | 否 | 是 |
測量方法 | 0 | 否 | 是 |
測量范圍 | 0 | 否 | 是 |
診斷 | 0 | 否 | 是 |
溫度單位 | 0 | 否 | 是 |
溫度系統 | 0 | 否 | 是 |
噪聲抑制 | 0 | 否 | 是 |
濾波 | 0 | 否 | 是 |
參比接點 | 0 | 否 | 是 |
周期結束中斷 | 0 | 否 | 是 |
診斷中斷啟用 | 1 | 是 | 是 |
硬件中斷啟用 | 1 | 是 | 是 |
參考溫度 | 1 | 是 | 是 |
上限 | 1 | 是 | 是 |
下限 | 1 | 是 | 是 |
表10 S7-400模擬量輸入模板的參數
圖8 S7-400模擬量輸入模板的數據記錄1的結構
以6ES7 431-7QH00-0AB0 模擬量輸入模板為例,程序塊SFC55調用:
圖9 SFC55系統塊調用
當M0.0上升沿使能時,將寫入的參數從MB100~MB166傳遞到輸入地址為100開始的模板,修改其數據記錄1的參數,同時也將參比接點的溫度也寫入模板的設定位置。
參數 | 聲明 | 數據類型 | 描述 |
REQ | bbbbb | BOOL | REQ=1,寫請求,上升沿信號。 |
IOID | bbbbb | BYTE | 地址區域的標識號:外設輸入=B#16#54; 外設輸出=B#16#55; 外設輸入/輸出混合,如果地址相同,為B#16#54,不同則低地址的區域ID。 |
LADDR | bbbbb | WORD | 模板的邏輯地址(初始地址),如果混合模板,兩個地址中的較低的一個。 |
RECNUM | bbbbb | BYTE | 數據記錄號,參考模板數據手冊。 |
RECORD | bbbbb | ANY | 需要傳送的數據記錄存放區。 |
RET_VAL | OUTPUT | INT | 故障代碼。 |
BUSY | OUTPUT | BOOL | BUSY=1,寫操作未完成。 |
表11 各參數的說明
4. 熱電偶的信號處理方式
4.1 硬件組態設置
首先要在硬件組態選擇與外部補償接線一致的measuring type(測量類型),measuring range(測量范圍),reference junction(參比接點類型)和reference temperature(參比接點溫度)的參數,如下各圖所示。
圖10 S7-300模板測量方式示意圖
圖11 S7-300模板測量范圍示意圖
對于S7-300的模板,組態如圖10和11所示,只需要選擇測量類型和測量范圍(分度類型),補償方式包含在測量類型中。比如: 參比接點固定溫度補償方式,測量類型選擇 TC-L00C(參比接點溫度固定為0℃) 或 TC-L50C(參比接點溫度固定為50℃),再選擇分度類型,組態就完成。
圖12 S7-400模板組態圖1
圖13 S7-400模板組態圖2
對于S7-400的模板,組態如圖12和13所示,測量類型中選擇TC-L方式,測量范圍中選擇與實際熱電偶類型一致的分度號,參比接點的選擇。比如:參比接點固定溫度的方式,測量類型和測量范圍選擇完后,在參比接點選擇ref.temp(參考溫度),然后在reference temperature框(參考溫度)內填寫參比接點的固定,組態就完成,或者是共享補償方式,可以用SFC55動態傳輸溫度參數。
400模板組態中Reference junction 參數 | 說 明 |
none | 無補償 |
internet | 模板內部補償 |
Ref. temp | 參比接點溫度固定已知補償 |
表12 參比接點參數說明
4.2 測量方式和轉換處理
CPU類型 | 測量方法 | 說 明 |
300CPU | TC-I | 內部補償 |
TC-E | 外部補償 | |
TC-IL | 線性,內部補償 | |
TC-EL | 線性,外部補償 | |
TC-L00C | 線性,參比接點溫度保持在0°C | |
TC-L50C | 線性,參比接點溫度保持在50°C | |
400CPU | TC-L 線性 |
表13 測量方式各參數的說明及處理
注:測量方式中:I :內部補償,E:外部補償,L:線性處理。
線性化方式(TC-IL/EL/L00C/L50C/L)
線性化方式下,由模板內部根據所選擇的熱電偶類型的特性進行線性處理,可以使用L PIW xxx 直接讀入,則將獲得十進制的溫度值,精度為0.1。例如:讀進來的 十進制值為2345,則對應的溫度值為234.5℃。
非線性化方式(TC-I/E)
對于非線性化的設置,此設置類似80Mv的電壓測量,CPU得到的是0~27648之間的一個十進制數值,即0~80Mv 對應0~27648,需要轉換成相應Mv信號,然后通過對照表查找溫度。
綜上所述,如果想得到所測的溫度值,選擇線性化方式的設置比較方便;如果僅需要得到Mv信號,可以選擇非線性化方式的設置。