激光拉曼光譜法的原理是拉曼散射效應
閱讀:801 發布時間:2019-11-21
當用波長比試樣粒徑小得多的單色光照射氣體、液體或透明試樣時,大部分的光會暗原來的發現透射,而一小部分則按不同的角度散射開來,產生散射光。在垂直方向觀察時,除了與原入射光有相同頻率的瑞利散射外,還有一系列對稱分布著若干條很弱的與入射光頻率發生位移的拉曼譜線,這種現象稱為拉曼效應。由于拉曼譜線的數目,位移的大小,譜線的長度直接與試樣分子振動或轉動能級有關。因此,與紅外吸收光譜類似,對拉曼光譜的研究,也可以得到有關分子振動或轉動的信息。目前拉曼光譜分析技術已廣泛應用于物質的鑒定,分子結構的研究
推薦激光拉曼光譜法是以拉曼散射為理論基礎的一種光譜分析方法。
激光拉曼光譜法的原理是拉曼散射效應。
拉曼散射:當激發光的光子與作為散射中心的分子相互作用時,大部分光子只是發生改變方向的散射,而光的頻率并沒有改變,大約有占總散射光的10-10-10-6的散射,不公改變了傳播方向,也改變了頻率。這種頻率變化了的散射就稱為拉曼散射。
對于拉曼散射來說,分子由基態E0被激發至振動激發態E1,光子失去的能量與分子得到的能量相等為△E反映了能級的變化。因此,與之相對應的光子頻率也是具有特征性的,根據光子頻率變化就可以判斷出分子中所含有的化學鍵或基團。
這就是拉曼光譜可以作為分子結構的分析工具的理論工具。
拉曼光譜儀的主要部件有:
激光光源、樣品室、分光系統、光電檢測器、記錄儀和計算機。