成人做爰免费视频免费看_成人a级高清视频在线观看,成人a大片在线观看,成人a大片高清在线观看,成人av在线播放,一a一级片,一级黄 中国色 片,一级黄 色蝶 片,一级黄色 片生活片

上海澤泉科技股份有限公司
中級會(huì)員 | 第17年

15026947287

2018澤泉植物表型技術(shù)Workshop通知(上海,3月16日)

時(shí)間:2018-3-12閱讀:974
分享:

上海澤泉科技股份有限公司多年來秉承推進(jìn)中國生態(tài)環(huán)境改善、農(nóng)業(yè)興國的理念,服務(wù)涉及植物表型育種,植物生理生態(tài),水文水利,農(nóng)業(yè)工程等領(lǐng)域的科研和。為更好地服務(wù)全國科研用戶,促進(jìn)植物表型育種、表型技術(shù)推廣,同時(shí)促進(jìn)相關(guān)研究設(shè)施和平臺的建設(shè),上海澤泉科技股份有限公司將于2018年3月16日下午在上海孫橋現(xiàn)代農(nóng)業(yè)園區(qū)AgriPheno高通量植物表型平臺舉辦“2018澤泉植物表型技術(shù)Workshop”。Workshop內(nèi)容包括植物表型研究技術(shù)研究進(jìn)展交流、AgriPheno高通量植物表型平臺及科研項(xiàng)目介紹以及平臺參觀考察。

 

現(xiàn)向各單位植物研究、農(nóng)業(yè)建設(shè)領(lǐng)域科研人員發(fā)出誠摯邀請,歡迎您出席本次workshop與參會(huì)者交流領(lǐng)域內(nèi)的科研進(jìn)展,期待您的光臨。

 

一、主辦單位:上海澤泉科技股份有限公司

 

二、會(huì)議時(shí)間與地點(diǎn)

時(shí)間:2018年3月16日下午

地點(diǎn):上海乾菲諾農(nóng)業(yè)科技有限公司(AgriPheno高通量植物表型平臺),上海市浦東新區(qū)沔北路185號孫橋現(xiàn)代農(nóng)業(yè)園C9-1

 

三、會(huì)議日程

時(shí)間

報(bào)告內(nèi)容及主講人

13:00-14:00

Plant Phenomics and   Image Analysis (植物表型組學(xué)與圖像分析)

主講:Ji Zhou, 周濟(jì),英國BBSRC Earlham Institute,University of East Anglia & 南京農(nóng)業(yè)大學(xué)表型交叉研究中心

14:05-14:45

Remote Sensing and IoT   for Phenomics(遙感和物聯(lián)網(wǎng)技術(shù)在表型研究中的應(yīng)用)

主講:Daniel Reynolds(周濟(jì)實(shí)驗(yàn)室, 英國BBSRC Earlham Institute)

14:50-15:30

Machine Learning for   Plant Phenomics (機(jī)器學(xué)習(xí)在植物表型中的應(yīng)用)

主講:Aaron Bostrom (周濟(jì)實(shí)驗(yàn)室, 英國BBSRC   Earlham Institute)

15:40-16:20

Introduction of AgriPheno   Plant Phenotyping Facility and Research Project (AgriPheno植物表型平臺介紹及科研項(xiàng)目進(jìn)展)

主講:Hong Zhang, 張弘, 上海澤泉科技股份有限公司

16:25-17:00

Engineering   Cost-effective Inligent Phenotyping Complete Set   Instrumentation/facilities for precise crop breeding (大宗作物表型篩選育種成套裝備、儀器與系統(tǒng))

主講:Liang Gong,貢亮,上海交通大學(xué)

 

四、參會(huì)須知

1、參會(huì)回執(zhí):請參會(huì)人員于3月14日前將參會(huì)回執(zhí)通過電子郵件發(fā)送至:vivi.xu@zealquest.com,或傳真。我們將根據(jù)參會(huì)回執(zhí)協(xié)助推薦住宿和安排參會(huì)事宜。掃描/點(diǎn)擊二維碼,填寫信息亦可參會(huì)。

3300.jpg

2、Workshop費(fèi)用:參會(huì)免費(fèi)。交通、食宿自理。

 

五、會(huì)務(wù)組

:徐靜萍,:vivi.xu@zealquest.com,:  分機(jī):8043

地址:上海市普陀區(qū)金沙江路1038號華大科技園2號樓8層  :200062

六、附件

附件1:2018澤泉植物表型技術(shù)Workshop 參會(huì)回執(zhí)

附件2:會(huì)場交通

附件3:報(bào)告摘要

 

上海澤泉科技股份有限公司

2018年3月12日

附件1:2018澤泉植物表型技術(shù)Workshop 回執(zhí)

工作單位

 

通信地址

 

 

傳真

 

 

姓名

性別

職稱/職務(wù)

手機(jī)

備注接送地鐵站

      
      
      
      
      
      
      
      

請于3月14日前將參會(huì)回執(zhí)通過電子郵件發(fā)送至:vivi.xu@zealquest.com,或傳真發(fā)送至。

 

附件2:會(huì)場交通

1.jpg
2.jpg

上海乾菲諾農(nóng)業(yè)科技有限公司

地址:上海市浦東新區(qū)沔北路185號孫橋現(xiàn)代農(nóng)業(yè)園C9-1

交通:地鐵16號線羅山路站,2號線廣蘭路站下車,我司安排車輛接送。具體信息可在百度地圖中搜索“上海乾菲諾農(nóng)業(yè)科技有限公司”。

附件3:報(bào)告摘要

Plant Phenomics and Image Analysis (植物表型組學(xué)與圖像分析)

主講Ji Zhou, 周濟(jì),英國BBSRC Earlham Institute,University of East Anglia, & 南京農(nóng)業(yè)大學(xué)表型交叉研究中心

With the maturation of high-throughput and low-cost genotyping platforms, the current bottleneck in breeding, c*tion and crop research lies in phenotyping and phenotypic analyses. Recent phenotyping technologies invented by industry and academia are capable of producing large image- and sensor-based data. However, how to effectively transform big data into biological knowledge is an immense challenge that urgently requires a cross-disciplinary effort. In the talk, I will introduce our research-based phenotyping platforms at Norwich Research Park, ranging from the sky to cells, including AirSurf (automated aerial analytic software), Phenospex (an in-field 3D laser scanning platform), CropQuant (a low-cost distributed crop monitoring system), SeedGerm (a machine-learning based seed germination device), Leaf-GP (an open-source software for quantifying growth phenotypes), and high content screening systems for cellular phenotype measurements. Through these examples, I will introduce our multi-scale phenomics solutions developed for different biological questions on bread wheat, brassica, and other plant species, including linking phenotypic analyses to the assessment of genes controlling performance-related traits, QTL analysis of yield potential, gene discovery using near isogenic lines (NILs), quantifying genotype-by-environment interactions (GxE) to assess environmental adaptation, etc. I will also talk about how to utilise open scientific and numeric libraries for data calibration, annotation, image analysis and phenotypic analyses.

 

● Remote Sensing and IoT for Phenomics(遙感和物聯(lián)網(wǎng)技術(shù)在表型研究中的應(yīng)用)

主講Daniel Reynolds(周濟(jì)實(shí)驗(yàn)室, 英國BBSRC Earlham Institute)

A high-level overview of remote sensing, Internet of Things (IoT) and how they are applied to Plant Phenomics. Latest remote sensing and IoT provide high-resolution and high-frequency environmental measurements when compared to traditional manual methods. Distributed sensor networks such as the CropQuant platform allow researchers to record the environment of in-field or indoor experiments without manual intervention, which allow the capture of dynamic environmental changes throughout key growing stages. The lecture will introduce the techniques and applications of IoT and remote sensing in plant phenomics, covering (1) what is IoT with respect to sensing networks, (2) the hardware available and suitable for IoT including digital and analogue sensors, (3) single-board computers and microcontrollers, (4) control software and interfacing with IoT devices, (5) data transmission and retrieval, and finally (6) the management of multiple devices and collation of remote data. The lecture will not cover technical details and mainly focus on the introduction of how remote sensing and IoT could be used for phenomics.

 

● Machine Learning for Plant Phenomics (機(jī)器學(xué)習(xí)在植物表型中的應(yīng)用)

主講 Aaron Bostrom (周濟(jì)實(shí)驗(yàn)室, 英國BBSRC Earlham Institute)

An introduction to machine learning and how to apply it in plant phenomics. Machine learning is a tool that has been gaining attention due to many advances in the last decade. This talk aims to provide a summary of machine learning techniques, simple and intuitive explanations and demonstrations about how machine learning has been applied to different real-world problems. In particular, generalisation and how to design training datasets and experimentation with machine learning in mind will be explained. The lecture will finish with some of Aaron’s current and previous work, and where machine learning have been applied to real world problems such as our AirSurf on lettuces yield prediction as well as SeedGerm software on seed germination measurements together with industrial leaders such as G’s Growers and Syngenta.

 

● Engineering Cost-effective Inligent Phenotyping Complete Set Instrumentation/facilities for precise crop breeding (大宗作物表型篩選育種成套裝備、儀器與系統(tǒng))

主講Liang Gong,貢亮,上海交通大學(xué)

It plays an important role for high-throughput phenotyping in cutting-edge crop breeding field, and this automation generates heterogeneous measuring data for subsequent meta-analyses, modeling, and ground-truth dataset building. Traditional researches focus on an individual instrument or data processing algorithms. We advocate that the crop breeeding issue has to be addressed with a systematic paradigm, ranging from building cost-effective infrastructure to leveraging crowd-sourcing applications, and to process standardization.The roadmap for conducting phenotyping-based breeding is depicted as, first, plant organ-specific phenotyping parameter index sets for crop breeding are optimally determined, and corresponding phenotyping instrumentation are introduced. Second, an entity-relationship data aggregation model is built to organize and present the phenotyping big data; Third, a paradigm of creating a phenotyping database is proposed to facilitate crop breeding. Finally, a formal GPEM database for constructing a crop breeding phenotyping database is established, which highlights the plant morphometric data retrieval and data mining. This data aggregation scheme provides an effective tool and exemplary template for dealing with big plant phenotyping data acquired by different devices and equipment under user-defined resolution. The case study for creating a GPEM phenotyping database is step-by-step investigated to show the feasibility and effectiveness of plant phenotyping big-data aggregation.

會(huì)員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗(yàn)證碼

收藏該商鋪

X
該信息已收藏!
標(biāo)簽:
保存成功

(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~
撥打電話
在線留言
主站蜘蛛池模板: a√天堂亚洲av| 久久久久久久岛国免费播放| 麻豆传煤官网APP入口免费| 浪潮AV色综合久久天堂| 欧美/亚洲/日韩在线看| ,国产精品久久久久久| 99国产精品久久久久久久日本竹| 求av网址| 国产精品久久久久久人妻精品A片| 人人澡人人澡人人看添av| WWW国产内插视频| 久久草在线视频国产一| 欧美日韩国产高清在线| 国产精品无码无在线观看| 麻豆www久久国产精品| 男女做爰动态图高潮GIF下一页| 麻豆天美国产一区在线播放| 亚洲专区日韩精品| 国产日韩欧美三级| 伊人春色伊人av| 天天日天天操天天干| 欧美激情亚洲一区二区三区| 我要看曰韩一级片| 欧美日韩亚洲天堂| 国产一区在线视频免费观看| 亚洲欧美日韩片| 国产精品一区二区人妻无码| 国产一区二区精品久久岳| 亚洲男人天堂a| 亚洲国产香蕉视频欧美| 亚洲国产高清精品久久久福利| 久久精品视频在线看99| 男人天堂最新网址| 国产又色又爽又刺激在线观看| 国产成人综合五月久久网址| 白丝英语老师用腿夹得我好爽高H| 性色无码AV久久蜜臀| 欧美精品在线三区| 中文字幕无线在线视频观| 欧美激情久久国产亚洲综合| 国产精品无码一区二区在线A片|